翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brauer-Hasse-Noether theorem : ウィキペディア英語版
Albert–Brauer–Hasse–Noether theorem
In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field ''K'' which splits over every completion ''K''''v'' is a matrix algebra over ''K''. The theorem is an example of a local-global principle in algebraic number theory and
leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Helmut Hasse, Richard Brauer, and Emmy Noether and by Abraham Adrian Albert.
== Statement of the theorem ==

Let ''A'' be a central simple algebra of rank ''d'' over an algebraic number field ''K''. Suppose that for any valuation ''v'', ''A'' splits over the corresponding local field ''K''''v'':
: A\otimes_K K_v \simeq M_d(K_v).
Then ''A'' is isomorphic to the matrix algebra ''M''''d''(''K'').

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Albert–Brauer–Hasse–Noether theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.