翻訳と辞書 |
Brauer-Hasse-Noether theorem : ウィキペディア英語版 | Albert–Brauer–Hasse–Noether theorem In algebraic number theory, the Albert–Brauer–Hasse–Noether theorem states that a central simple algebra over an algebraic number field ''K'' which splits over every completion ''K''''v'' is a matrix algebra over ''K''. The theorem is an example of a local-global principle in algebraic number theory and leads to a complete description of finite-dimensional division algebras over algebraic number fields in terms of their local invariants. It was proved independently by Helmut Hasse, Richard Brauer, and Emmy Noether and by Abraham Adrian Albert. == Statement of the theorem ==
Let ''A'' be a central simple algebra of rank ''d'' over an algebraic number field ''K''. Suppose that for any valuation ''v'', ''A'' splits over the corresponding local field ''K''''v'': : Then ''A'' is isomorphic to the matrix algebra ''M''''d''(''K'').
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Albert–Brauer–Hasse–Noether theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|